CS/B.TECH(N)/EVEN/SEM-4/4443/2022-2023/I130

MAULANA ABUL KALAM AZAD UNIVERSITY OF TECHNOLOGY, WEST BENGAL

Paper Code : CE(ES)401 Introduction to Fluid Mechanics UPID : 004443

Time Allotted : 3 Hours

Full Marks :70

 $[1 \times 10 = 10]$

The Figures in the margin indicate full marks. Candidate are required to give their answers in their own words as far as practicable

Group-A (Very Short Answer Type Question)

1. Answer any ten of the following :

- (I) Which is the mathematical technique used to predict physical parameters?
- (II) What is the maximum number of times the pathlines of two particles can intersect in an one dimensional flow?
- (III) The rise in the level of a liquid in a tube is h. If half the amount is poured outside, what will be the new rise in liquid level?
- (IV) For an incompressible fluid does density vary with temperature and pressure?
- (V) What is fluid mechanics used for?
- (VI) Which is the standard symbol for Archimedes number?
- (VII) What is model testing?
- (VIII) Where does open channel flow takes place?
- ^(IX) Which equation must be perfunctorily satisfied while dealing with fluid flow problems?
- (X) What type of flow can be taken for granted in a pipe of a uniform cross-section?
- (XI) When is the fluid flow called laminar?
- (XII) Pressure intensity or force due to pressure gradient for fluid at rest is considered as which kind of force?

	Group-B (Short Answer Type Question)	
	Answer any three of the following :	[5 x 3 = 15]
2.	The shear stress at a point in a liquid is found to be 0.03 N/m^2 . The velocity gradient at the point is 0.15^1 . What will be it's viscosity (in Poise)?	s ⁻ [5]
3.	12litres of a liquid of sp.gr.1.3 is mixed with nine litres of a liquid of sp. gr. 0.8. If the bulk of the liquid shrinks 1% on mixing, calculate the sp.gr, the volume and the weight of the mixture.	[5]
4.	If 200 m ³ of fluid has a weight of 1060 N measured on the planet having acceleration due to gravity 6.625m/s ² , what will be it's specific volume?	[5]
5.	Obtain an expression for capillary rise of a liquid.	[5]
6.	Write a detailed note on differential manometer and piezometer.	[5]
	Group-C (Long Answer Type Question)	
	Answer any three of the following :	[15 x 3 = 45]
7.	(a) Write about the different physical properties of fluids.	[5]
	(b) Write a detailed note on pressure and specific weight relationship.	[5]
	(c) Write a detailed note on differential manometer and Borden Gauge.	[5]
8.	(a) A reaction turbine works at 450 rpm under a head of 120 m. Its diameter at inlet is 120 cm and flow area is 0.4 m ² . The angles made by the obsolete and relative velocities at the inlet is 20° and 60° respectively with the tangential velocity. Determine the power developed. Assume the whirl velocity at outlet is zero.	/ [5] /
	(b) A double jet impulse turbine has to develop 3000 kW at 400 rpm under a head of 270 m. if the overall efficiency is 0.90, determine the (1) diameter of the nozzle.Take coefficient of velocity as 0.95 and diameter of runner as 1.5 m.	e [5] s
	(c) A double jet impulse turbine has to develop 3000 kW at 400 rpm under a head of 270 m. if the overall efficiency is 0.90, determine the specific speed. Take coefficient of velocity as 0.95 and diameter of runner as 1.5 m.	e [5] I
9.	(a) If u=x and v=-y describes a certain flow field, determine whether or not the equation of continuity is satisfied. Also investigate the types of flow models.	s [7]

	(b)	Derive the equation of continuity for incompressible fluid.	[6]
	(c)	Define the vertex line.	[2]
10.	(a)	Draw the velocity triangle for Pelton turbine when horizontal component of is less than u ² .	[5]
	(b)	What is the significance of draft tube in reaction turbine?	[5]
	(c)	Write the Euler's equation of hydrodynamics machines.	[5]
11.	(a)	A three stage centrifugal pump has impeller of 40 cm in diameter and 2.5 cm wide at outlet. The vanes are curved back at the outlet at 30° and reduce the circumferential are by 15%. The manometric efficiency is 85% and overall efficiency is 75%. Determine the head generated by the pump when running at 12000 rpm and discharging 0.06 m ³ /s. Also find shaft horse power.	[7]
	(b)	A reaction turbine works at 450 rpm under a head of 120 m. Its diameter at inlet is 120 cm and flow area is 0.4 m^2 . The angles made by the obsolete and relative velocities at the inlet is 20° and 60° respectively with the tangential velocity. Determine the volume flow rate Assume the whirl velocity at outlet is zero.	[4]
	(c)	A reaction turbine works at 450 rpm under a head of 120 m. Its diameter at inlet is 120 cm and flow area is 0.4 m ² . The angles made by the obsolete and relative velocities at the inlet is 20° and 60°	[4]

respectively with the tangential velocity. DetermineHydraulic Efficiency. Assume the whirl velocity

*** END OF PAPER ***

at outlet is zero.